Processing math: 0%
1
2
$\def\colim{\operatorname{colim}}
\def\Ker{\operatorname{Ker}}$Thisisnotastupid
question.Firstofall,hesaysAB3shouldbesatisfied
andthethingyousay.InparticularGrothendieck'sAB5
impliestheexistenceofcolimits.Nowlet'sforexample
trytoshowthatcolimitsover$\mathbf{N}$areexactif
Grothendieck'sAB5holds.Soassumegivenashortexact
sequenceofsystems$0\to(A_n)\to(B_n)\to(C_n)\to
0$over$\mathbf{N}$.Itisclearthat$\colimA_n\to
\colimB_n\to\colimC_n\to0$isexactbylookingat
Homsintoanotherobjectandusingthemappingproperty
of$\colim$.OK,nowlet$K\subset\colimA_n$bethe
kernelofthefirstmap.Let$A'_n\subset\colimA_n$be
theimageof$A_n$.Observethat$\colimA_n=\sumA'_n$
asthemap$\bigoplusA_n\to\colimA_n$issurjective.
ThenGrothendieck'saxiomAB5saysitsufficestoshow
that$K\capA'_n=0$.Iclaimthat$\Ker(A_n\toA'_n)
=\bigcup\Ker(A_n\toA_{n+m})$.ToseethisIsuggest
youthinkabouttheexactsequence
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LaTeX

Compile Error

1. Check the configured compile mode in settings

2. Check the LaTeX log file:

MathJax
\def\colim{\operatorname{colim}} \def\Ker{\operatorname{Ker}}This is not a stupid question. First of all, he says AB3 should be satisfied and the thing you say. In particular Grothendieck's AB5 implies the existence of colimits. Now let's for example try to show that colimits over \mathbf{N} are exact if Grothendieck's AB5 holds. So assume given a short exact sequence of systems 0 \to (A_n) \to (B_n) \to (C_n) \to 0 over \mathbf{N}. It is clear that \colim A_n \to \colim B_n \to \colim C_n \to 0 is exact by looking at Homs into another object and using the mapping property of \colim. OK, now let K \subset \colim A_n be the kernel of the first map. Let A'_n \subset \colim A_n be the image of A_n. Observe that \colim A_n = \sum A'_n as the map \bigoplus A_n \to \colim A_n is surjective. Then Grothendieck's axiom AB5 says it suffices to show that K \cap A'_n = 0. I claim that \Ker(A_n \to A'_n) = \bigcup \Ker(A_n \to A_{n + m}). To see this I suggest you think about the exact sequence
0 \to \bigoplus A_n \to \bigoplus A_n \to \colim A_n \to 0
and use Grothendieck's axiom AB5 about unions inside the object in the middle. A similar argument shows that the inverse image of K in A_n is \bigcup \Ker(A_n \to B_{n + m}). Since the maps A_{n + m} \to B_{n + m} are injective we conclude. Presumably there are shorter proofs as well.

Anyway, it doesn't matter as we will use AB5 as stated throughout the document.