1
2
$\def\colim{\operatorname{colim}}卢
\def\Ker{\operatorname{Ker}}$This路is路not路a路stupid路
question.路First路of路all,路he路says路AB3路should路be路satisfied路
and路the路thing路you路say.路In路particular路Grothendieck's路AB5路
implies路the路existence路of路colimits.路Now路let's路for路example路
try路to路show路that路colimits路over路$\mathbf{N}$路are路exact路if路
Grothendieck's路AB5路holds.路So路assume路given路a路short路exact路
sequence路of路systems路$0路\to路(A_n)路\to路(B_n)路\to路(C_n)路\to路
0$路over路$\mathbf{N}$.路It路is路clear路that路$\colim路A_n路\to路
\colim路B_n路\to路\colim路C_n路\to路0$路is路exact路by路looking路at路
Homs路into路another路object路and路using路the路mapping路property路
of路$\colim$.路OK,路now路let路$K路\subset路\colim路A_n$路be路the路
kernel路of路the路first路map.路Let路$A'_n路\subset路\colim路A_n$路be路
the路image路of路$A_n$.路Observe路that路$\colim路A_n路=路\sum路A'_n$路
as路the路map路$\bigoplus路A_n路\to路\colim路A_n$路is路surjective.路
Then路Grothendieck's路axiom路AB5路says路it路suffices路to路show路
that路$K路\cap路A'_n路=路0$.路I路claim路that路$\Ker(A_n路\to路A'_n)路
=路\bigcup路\Ker(A_n路\to路A_{n路+路m})$.路To路see路this路I路suggest路
you路think路about路the路exact路sequence卢