Processing math: 11%
1
$\nabla\left({\mathbff\cdot\mathbfg}\right)=
\left({\mathbfg\cdot\nabla}\right)\mathbff+
\left({\mathbff\cdot\nabla}\right)\mathbfg+
\mathbfg\times\left({\nabla\times\mathbff}\right)
+\mathbff\times\left({\nabla\times\mathbf
g}\right)$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
LaTeX
MathJax
\nabla \left({\mathbf f \cdot \mathbf g}\right) = \left({\mathbf g \cdot \nabla}\right) \mathbf f + \left({\mathbf f \cdot \nabla}\right) \mathbf g + \mathbf g \times \left({\nabla \times \mathbf f}\right) + \mathbf f \times \left({\nabla \times \mathbf g}\right)

\nabla \left({\mathbf f \cdot \mathbf g}\right) | = \nabla \left({f_x g_x + f_y g_y + f_z g_z}\right)

= \dfrac {\partial \left({f_x g_x + f_y g_y + f_z g_z}\right)} {\partial x} \mathbf i + \dfrac {\partial \left({f_x g_x + f_y g_y + f_z g_z}\right)} {\partial y} \mathbf j + \dfrac {\partial \left({f_x g_x + f_y g_y + f_z g_z}\right)} {\partial z} \mathbf k

= \left({f_x \dfrac {\partial g_x} {\partial x} + \dfrac {\partial f_x} {\partial x} g_x + f_y \dfrac {\partial g_y} {\partial x} + \dfrac {\partial f_y} {\partial x} g_y + f_z \dfrac {\partial g_z} {\partial x} + \dfrac {\partial f_z} {\partial x} g_z}\right) \mathbf i

+\left({f_x \dfrac {\partial g_x} {\partial y} + \dfrac {\partial f_x} {\partial y} g_x + f_y \dfrac {\partial g_y} {\partial y} + \dfrac {\partial f_y} {\partial y} g_y + f_z \dfrac {\partial g_z} {\partial y} + \dfrac {\partial f_z} {\partial y} g_z}\right) \mathbf j

+ \left({f_x \dfrac {\partial g_x} {\partial z} + \dfrac {\partial f_x} {\partial z} g_x + f_y \dfrac {\partial g_y} {\partial z} + \dfrac {\partial f_y} {\partial z} g_y + f_z \dfrac {\partial g_z} {\partial z} + \dfrac {\partial f_z} {\partial z} g_z}\right) \mathbf k

\left({\mathbf g \cdot \nabla}\right) \mathbf f = \left({g_x \dfrac \partial {\partial x} + g_y \dfrac \partial {\partial y} + g_z \dfrac \partial {\partial z} }\right) \mathbf f \left({\mathbf f \cdot \nabla}\right) \mathbf g = \left({f_x \dfrac \partial {\partial x} + f_y \dfrac \partial {\partial y} + f_z \dfrac \partial {\partial z} }\right) \mathbf g

=g_x \dfrac {\partial f_x} {\partial x} \mathbf i + g_y \dfrac {\partial f_y} {\partial y} \mathbf j + g_z \dfrac {\partial f_z} {\partial z} \mathbf k = f_x \dfrac {\partial g_x} {\partial x} \mathbf i + f_y \dfrac {\partial g_y} {\partial y} \mathbf j + f_z \dfrac {\partial g_z} {\partial z} \mathbf k